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Abstract

Air samples collected during 1994–2000 at the Canadian arctic air monitoring sta-
tion Alert (82◦30′ N, 62◦20′ W) were analyzed by enantiospecific gas chromatography –
mass spectrometry for α-hexachlorocyclohexane (α-HCH), trans-chlordane (TC) and
cis-chlordane (CC). Results were expressed as enantiomer fractions (EF = quantities5

of (+)/[(+)+(−)] enantiomers), where EFs=0.5, < 0.5 and > 0.5 indicate racemic com-
position, and preferential depletion of (+) and (−) enantiomers, respectively. Long-term
average EFs were close to racemic values for α-HCH (0.504±0.004, n =197) and
CC (0.505±0.004, n =162), and deviated farther from racemic for TC (0.470±0.013,
n =165). Digital filtration analysis revealed biannual cycles of lower α-HCH EFs in10

summer-fall and higher EFs in winter-spring. These cycles suggest volatilization of
partially degraded α-HCH with EF < 0.5 from open water and advection to Alert during
the warm season, and background transport of α-HCH with EF> 0.5 during the cold
season. The contribution of sea-volatilized α-HCH was only 11 % at Alert, vs. 32 %
at Resolute Bay (74.68◦ N, 94.90◦ W) in 1999. EFs of TC also followed biannual cy-15

cles of lower and higher values in the warm and cold seasons. These were in phase
with low and high cycles of the TC/CC ratio (expressed as FTC =TC/(TC+CC)), which
suggests greater contribution of microbially “weathered” TC in summer-fall vs. winter-
spring. CC was closer to racemic than TC and displayed seasonal cycles only in 1997–
1998. EF profiles are likely to change with rising contribution of secondary emission20

sources, weathering of residues in the environment, and loss of ice cover in the Arctic.
Enantiomer-specific analysis could provide added forensic capability to air monitoring
programs.

1 Introduction

Production and use of 12 persistent organic pollutants (POPs) were discontinued25

worldwide in 2001 under the Stockholm Convention. Nine of these were organochlorine

25029

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25027/2014/acpd-14-25027-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25027/2014/acpd-14-25027-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25027–25050, 2014

Biannual cycles of
organochlorine

pesticide
enantiomers in arctic

air

T. F. Bidleman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

pesticides (OCPs): aldrin, dieldrin, endrin, chlordane, DDT, heptachlor, hexachloroben-
zene, mirex and toxaphene. Three OCPs were added later: hexachlorocyclohexanes
(HCHs) and chlordecone in 2009 and endosulfan in 2011 (UNEP, 2014). Some OCPs
were already in decline by the 1980s and 1990s through country-specific and regional
restrictions and bans; e.g., technical HCH, DDT and toxaphene (Li and Macdonald,5

2005; Wong et al., 2005).
Residues of POPs remain in soil (Dalla Valle et al., 2005), vegetation (Dalla Valle

et al., 2004) and oceans (Pućko et al., 2013; Stemmler and Lammel, 2009, 2013;
Wöhrnschimmel et al., 2012; Xie et al., 2011) as a legacy of 50 or more decades of
usage. Emissions from these “secondary sources” buffer atmospheric concentrations10

in background regions (Cabrerizo et al., 2011; Nizzetto and Perlinger, 2012; Nizzetto
et al., 2010; Stemmler and Lammel, 2009; Jantunen et al., 2008; Wöhrnschimmel et al.,
2012; Wong et al., 2011). Climate change is expected to increase emissions from both
primary and secondary sources (Gouin et al., 2013; Kallenborn et al., 2012a, b; Mac-
donald et al., 2005; UNEP, 2011), and one consequence is to confound interpretation15

of temporal trends derived from long-term monitoring data (Kallenborn et al., 2012b;
Macdonald et al., 2005). Concentrations of most OCPs in arctic air have fallen over the
last two decades (Becker et al., 2012; Hung et al., 2010; Ma et al., 2011), but some
have declined more slowly than others or even risen slightly after about 2000. The
slowed declines have been attributed to increased volatilization of OCP residues from20

environmental reservoirs (Becker et al., 2012; Hung et al., 2010; Ma et al., 2011) and
linked to rising temperatures and decreasing ice cover (Ma et al., 2011).

Many POPs are chiral, including the OCPs α-HCH (the major constituent of techni-
cal HCH) and technical chlordane components trans-chlordane (TC) and cis-chlordane
(CC). Each of these chiral compounds consists of two enantiomers which have the25

same physicochemical properties. Abiotic transport and transformation processes will
not change enantiomer proportions provided they take place in achiral environments.
However, enzymes are chiral and enantioselective metabolism of xenobiotics is the
“rule rather than the exception” (Hegeman and Laane, 2002). Chiral OCPs were pro-
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duced as racemates (equal proportion of enantiomers), and occurrence of nonracemic
residues in soil and water indicates microbial degradation. Enantiospecific analysis
of chiral compounds offers unique opportunities in environmental forensics by distin-
guishing racemic (newly released or protected from microbial attack) and nonracemic
(microbially weathered) sources (Bidleman et al., 2012, 2013; Hühnerfuss and Shah,5

2009). Volatilization of partially degraded POPs from soil and water carries their distinc-
tive nonracemic enantiomer proportions into the overlying air and such investigations
have been recently reviewed (Bidleman et al., 2012, 2013; Ulrich and Falconer, 2011).

Measurements of chiral OCPs in the arctic physical environment have focused one
or several sites at a particular time and there have been few investigations of temporal10

trends. Here we examine the enantiomer proportions of α-HCH, TC and CC in a time
series of air samples collected from 1994–2000 at the Alert, Canada monitoring sta-
tion to gain insight to seasonal changes in sources and transport pathways. This is
the largest data set of enantiospecific analytical data for chlordanes at an arctic air
monitoring station and the first for α-HCH.15

2 Materials and methods

Air samples were collected at Alert, Ellesmere Island, Canada (82◦30′ N, 62◦20′ W,
200 m a.s.l.) as part of a monitoring program that has been continuous from 1992
to the present. Sampling and analytical methods have been summarized by Fellin
et al. (1996) and Halsall et al. (1998). Archived extracts of polyurethane foam traps, rep-20

resenting gas-phase components, were obtained for chiral analysis from January 1994
through week 34 of 2000. Those from 1994 were composites of four 7-day samples,
while individual 7-day samples were available in the other years. Gaps prevented full
coverage in any year (Table 1). Enantiomers of α-HCH, TC and CC were determined
in the extracts using previously described methods and quality control procedures25

(Bidleman et al., 2002; Jantunen et al., 2008, 1998; Kurt-Karakus et al., 2005; Wong
et al., 2011). Separations were carried out on either Betadex-120 (BDX, 30m×0.25mm
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i.d., 0.25 µm film) or BGB-172 (BGB, 15m×0.25mm i.d., 0.25 µm film) chiral-phase
columns, with detection by electron capture negative ion mass spectrometry. Analyt-
ical data were expressed as enantiomer fraction, EF = quantities of (+)/[(+)+ (−)]
enantiomers. A racemic compound has EF=0.5, whereas EFs< 0.5 and > 0.5 in-
dicate depletion of (+) and (−) enantiomers, respectively. In some cases, air sam-5

ples were analyzed on both columns and slight, but significant, biases were noticed.
The average EFBGB = (0.984±0.022) ·EFBDX for TC (p < 0.0001, n =38), EFBGB =
(1.006±0.009) ·EFBDX for CC (p < 0.04, n =11) and EFBGB = (1.010±0.019) ·EFBDX
for α-HCH (p < 0.002, n = 41). Since the BGB column was used for most analyses,
results from the BDX column were adjusted to the BGB scales.10

Time series analysis was conducted by digital filtration (DF) to give best fits for sea-
sonal and long-term trends at 95 % confidence (Hung et al., 2002). Air parcel tra-
jectories backwards from Alert were calculated four times each day (00:00, 06:00,
12:00 and 18:00 UTC) at 10 m a.g.l. and going back 72 h over each sampling period
(Canadian Meteorological Centre). Ice cover data for the Canadian Archipelago and15

southern Beaufort Sea were obtained from the Canadian Ice Service (Environment
Canada), through the tool IceGraph 2.0 (http://www.ec.gc.ca/glaces-ice/?lang=En&n=
A1A338F4-1&offset=5&toc=show, accessed 6 July 2014).

3 Results and discussion

OCP concentrations and analysis of seasonal and long-term trends are presented else-20

where (Becker et al., 2008, 2012; Halsall et al., 1998; Hung et al., 2002, 2005, 2010; Su
et al., 2008; Wöhrnschimmel et al., 2012). Annual mean air concentrations and EFs of
α-HCH, TC and CC from 1994–2000 are summarized in Table 1. The three OCPs de-
clined significantly during this decade, times for 50 % concentration decrease between
1993–2001 were 5.0, 4.9 and 6.7 years, respectively (Hung et al., 2010).25
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3.1 α -HCH

Emissions of α-HCH from technical HCH peaked in the early 1980s and were greatly
reduced by the early 1990s, due largely to bans or restrictions implemented by China,
India and the former Soviet Union. By the end of the 1990s arctic air concentrations
had dropped to less than 10 % of peak values (Li and Macdonald, 2005). A global5

fate and transport model indicates that secondary emissions of α-HCH from soil and
water closely tracked primary emissions throughout technical HCH usage history, and
secondary emissions came into dominance in the late 1990s (Wöhrnschimmel et al.,
2012).

The mean EF of α-HCH (0.504±0.004, n =197) over all years (including the partial10

year 2000) was close to racemic and little interannual variation was found (Table 1).
Greater insight is provided by plotting the time series of EFs (Fig. 1a), where DF anal-
ysis shows the fitted EF curve often dipping below the long-term mean in summer-
fall and rising above the mean in winter-spring. A chart of fractional ice cover in the
Archipelago and southern Beaufort Sea is shown in Fig. 1b. Minimum ice cover oc-15

curred between weeks 36–39, with the window for 50 % ice cover between weeks 29–
45. Superimposing these plots (Fig. 1) shows that the EF minima occur during periods
of more open water, suggesting α-HCH volatilization from the ocean. Average summer-
fall minima and winter-spring maxima EFs from the DF analysis are 0.500±0.003 and
0.507±0.002 (n =7 pairs), and are significantly different at p =0.0007 (paired t test,20

two sample for means). Sources of air to Alert during the minimum EF periods are
shown in Fig. S1 of Supplement as combined 72 h back trajectories from the end of
July to mid-October. Air parcels arriving from NE–NW pass over areas of the Arctic
Ocean that are mainly ice-covered, while those from the SE–W traverse unfrozen ar-
eas of Baffin Bay, the Archipelago and southern Beaufort Sea. The α-HCH in surface25

water of this region in 1999 was strongly depleted in the (+) enantiomer, with EFs
0.432–0.463, averaging 0.442±0.007 (Bidleman et al., 2007).

25033

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/14/25027/2014/acpd-14-25027-2014-print.pdf
http://www.atmos-chem-phys-discuss.net/14/25027/2014/acpd-14-25027-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
14, 25027–25050, 2014

Biannual cycles of
organochlorine

pesticide
enantiomers in arctic

air

T. F. Bidleman et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Measurements at Resolute Bay (74.68◦ N, 94.90◦ W, 67 m a.s.l.) on Cornwallis Is-
land in 1999 found that α-HCH in air was nearly racemic during periods of ice cover
and nonracemic after ice breakup. Application of the Harner et al. (2000) source ap-
portionment relationship estimated that seawater volatilization contributed 32 % of the
α-HCH in air during the open water period (Jantunen et al., 2008). Similar differences5

in EFs of α-HCH in air between ice-covered and ice-free periods were found from
shipboard measurements in the southern Beaufort Sea (Wong et al., 2011). Alert in
the high Arctic appears much less influenced by reemission of nonracemic α-HCH
from the ocean. Assuming the mean winter-spring “background” EF=0.507 and mean
summer-fall EF=0.500 from the fitted DF curves, and the mean EF=0.442 in seawa-10

ter of the Archipelago-Beaufort Sea (see above), regional volatilization contributed only
11 % to the α-HCH in air at Alert. EFs of α-HCH at Alert are positively and significantly
correlated to ice cover (p < 0.0005, r2 =0.061, Fig. S2a) and α-HCH concentration
(p < 0.005, r2 =0.042, Fig. S2b), though in both cases the relationships are weak.

Why are winter-spring EFs at Alert above the racemic value of 0.500? Preferen-15

tial degradation of (+)α-HCH (EF< 0.5) is common in most Northern Hemisphere
aquatic systems, including the Laurentian Great Lakes, arctic wetlands, most of the
Arctic Ocean, the North Atlantic and Baltic Sea; while (−) degradation (EF> 0.5) is
favored in the Bering-Chukchi seas and parts of the North Sea (reviewed by Bidleman
et al., 2012). Mixed degradation, though largely of the (+) enantiomer, was found in the20

equatorial Indian Ocean (Huang et al., 2013). A compilation of degradation preferences
for α-HCH in 270 agricultural and background soils showed that (−) degradation was
favored in 50 %, (+) degradation in 20 % and 30 % contained racemic residues, with
an overall mean EF of 0.528±0.095 (reviewed by Bidleman et al., 2012, 2013). Re-
gional “footprints” are important in determining the enantiomer composition of α-HCH25

in air. A 2002 study of α-HCH in passive air samples from across Europe found that
proximity to the North Atlantic and Baltic was marked by EFs generally< 0.5, whereas
inland samples and those influenced by the Mediterranean tended toward EFs> 0.5.
Higher concentrations of α-HCH and EFs> 0.5 were found at eastern European sites
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and suggested old sources with preferential degradation of the (−) enantiomer (Co-
vaci et al., 2010). The situation over the North Pacific is unclear. One study found that
the α-HCH in air transported across the North Pacific was racemic above the ma-
rine boundary layer and depleted in the (−) enantiomer (EF> 0.5) below the boundary
layer (Genualdi et al., 2009), while another group reported (+) depletion of α-HCH in5

sea-level air over the North Pacific and western Arctic (EF < 0.5) (Ding et al., 2007).
Air samples from coastal stations in eastern and western Canada were influenced by
emissions of α-HCH depleted in the (+) or (−) enantiomers, respectively (Shen et al.,
2004). The weak correlations in Fig. S2 indicate that processes other than regional
volatilization are mainly controlling α-HCH at Alert. In the 1990s, Alert likely received10

some racemic α-HCH from continued release of technical HCH mixed with air masses
containing “recycled” α-HCH with opposite degradation preferences, These resulted in
the mean winter-spring background EF of 0.507.

3.2 Chlordanes

All uses of chlordane in the US were cancelled in 1988 and the largest manufacturer15

stopped world production in 1997 (Ulrich and Falconer, 2011). China continued to pro-
duce chlordane until 2003 and usage was phased out by 2008. Between 1994–2000,
China produced and domestically consumed about 1800 tons of chlordane, largely for
termiticide use (Wang et al., 2013). Thus, both new and old sources of chlordane were
contributing to atmospheric levels during the years of this study.20

CC in air at Alert was slightly nonracemic, mean EF=0.505±0.004, n=162. Greater
enantioselective degradation was found for TC, mean EF= 0.470±0.013, n =165.
EFs in the same ranges were previously reported for TC and CC in smaller sets of
air samples (10–23 at each station) from Alert (1993–1996 and 1999), the arctic sta-
tions Pallas, Finland (68◦58′ N, 24◦07′ E; 1998 and 2001) and Dunai, Russia (74◦00′ N,25

125◦00′ E; 1994–1995), and Rörvik on the southwest coast of Sweden (57◦25′ N,
11◦56′ E; 1998 and 2001) (Bidleman et al., 2002, 2004). TC and CC were racemic in
atmospheric deposition samples collected in Sweden, Iceland and Slovakia in 1971–
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1973 (Bidleman et al., 2004). The shift from racemic to non-racemic proportions, es-
pecially for TC, suggested a transition toward greater contribution of weathered chlor-
dane sources by the late 1990s. This was corroborated by a time trend of EFs for TC
in dated sediments of a remote lake in the Canadian Arctic, which showed increas-
ingly nonracemic compositions from the 1950s into the 1990s (Bidleman et al., 2004;5

Stern et al., 2005). TC and CC in sediments from US lakes and reservoirs tended to be
nonracemic in the upper layers and in suspended sediment, and closer to racemic in
deeper layers (Ulrich et al., 2009), again suggesting a shift to secondary sources over
time.

Trends in EFs of TC in Alert air derived from DF analysis are shown in Fig. 2. A strik-10

ing feature is the biannual cycling of lower EFs in summer-fall (mean of annual minima
= 0.456±0.006) and higher (but still nonracemic) EFs in winter-spring (mean of an-
nual maxima = 0.486±0.006) (Fig. 2a). EFs of CC are more constant and display little
seasonality, except in 1997–1998 (Fig. 2b). The EF cycles for TC are in phase with
cycles of the TC/CC ratio, expressed as the fraction FTC = TC/(TC+CC) (Fig. 3).15

FTC in arctic air during all seasons is generally below the compositions of the technical
chlordane produced in the US (0.54) (Jantunen et al., 2000) and China (0.43–0.47)
(Li et al., 2006), and are thought to indicate weathered chlordane sources (Becker
et al., 2012; Hung et al., 2010; Su et al., 2008). A confounding factor is emissions
from technical heptachlor which was contaminated with about 18–22 % TC and 2 % CC20

(NCI, 1977) and boosts the FTC above the technical chlordane composition. Spikes of
anomalously high FTC in arctic air have been associated with heptachlor (Becker et al.,
2012; Hung et al., 2010; Su et al., 2008). Depletion of TC concentrations and lower
FTC in arctic air during summer have been noted since the 1980s (Oehme et al., 1991)
and are also seen in temperate latitudes (Hoff et al., 1992). Most explanations have25

pointed to greater photochemical reactivity of TC and preferential removal from the
atmosphere during summer (Becker et al., 2012; Hoff et al., 1992; Oehme, 1991; Su
et al., 2008). In support of this hypothesis, the transformation products oxychlordane
(OXY) and heptachlor-exo-epoxide (HEPX) maximized in arctic air during summer (Su
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et al., 2008), and photolysis products of CC and other cyclodienes have been found in
ringed seal (Hühnerfuss and Shah, 2009; Hühnerfuss et al., 2005; Zhu et al., 1995).
However, photochemistry may not be the only explanation. Su et al. (2008) examined
the temperature dependence of the TC/CC ratio and concluded that thermal effects
might account for reduced FTC in summer. This is because the enthalpies of vapor-5

ization and octanol-air partitioning are slightly greater for CC than TC, and warmer
temperatures in summer could have a greater effect on the vapor-phase concentration
of CC.

The similar cycling of FTC and the EF of TC (Fig. 3) suggests that microbial pro-
cessing plays a role in its transport and fate, but how and where is unclear. Average10

degradation preferences in > 200 soils worldwide are 56 % (+)TC, 29 % (−)TC, with
15 % of soils containing racemic TC; 22 % (+)CC, 64 % (−)CC, 14 % racemic CC; and
average EFs are TC 0.480±0.067, CC 0.531±0.073 (reviewed by Bidleman et al.,
2012, 2013). From these general enantiomer profiles, emissions from soils should be
depleted in (+)TC and (−)CC. However, regional variations are apparent; e.g. soils in15

the midwest USA showed strong preference for (+)TC and (−)CC degradation (Aigner
et al., 1998), but both (−)TC and (−)CC were depleted in soils of the Pearl River Delta,
China (Li et al., 2006) while mixed enantioselectivity was found in soils of Zhejiang
Province, China (Zhang et al., 2012a) and in global background soils (Kurt-Karakus
et al., 2005). As for α-HCH, regional footprints of chlordane EFs likely influence air20

signatures.
The lower EFs of TC in Alert air during summer-fall suggest more active biodegrada-

tion in soil and greater contribution of soil emissions during this time, whereas higher
EFs in winter-spring indicate less microbially weathered TC, perhaps from outgassing
of buildings treated with chlordane termiticides. Only two studies have been made of25

chiral chlordanes in the air of US private homes, and both reported racemic TC and
CC (Jantunen et al., 2000; Leone et al., 2000). Still, transport of nonracemic TC from
temperate soils to the Arctic cannot fully explain the trends in Fig. 3. The correlation
between EF and FTC is highly significant (p < 10−6) because there are a large number
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of data points, but the r2 is only 0.16 (Fig. S3a). Also, enantiospecific degradation of
TC to yield an EF of 0.456 (mean of annual minima) would only lower FTC from 0.39
(mean of annual maxima, Fig. 3b) to 0.37, whereas the mean of FTC minima in Fig. 3b
is 0.21. Thus, the cycles in EF are indicative, but not the cause, of similar cycles in FTC.

Noting that degradation in soils tends to favor (−)CC and (+)TC (see above), one5

would expect biannual EF cycles of CC in air to be opposite of those for TC; i.e., higher
in the warmer period and lower in the colder period. This pattern is evident in 1997–
1998, but little seasonality is seen in other years and deviations from racemic are far
less than for TC (Fig. 2b). There is no significant relationship between the EF of CC
and FTC (Fig. S3b).10

Relationships of EFs to air concentrations and ice cover are shown in Figs. S4 and
S5. The EF of TC is positively, but weakly, correlated to air concentration (Fig. S4a,
r2 =0.039, p =0.014). The relationship to ice cover is strongly positive (Fig. S5a,
r2 =0.44, p < 10−20), probably because EFs of TC are lower in summer and higher
in winter for reasons that are not associated with ice (see above). EFs of CC are not15

related to air concentration (Fig. S4b) and show a weak negative correlation to ice cover
(Fig. S5b, r2 =0.044, p =0.008). Both chlordanes were racemic in arctic seawater in
the mid- to late 1990s (Hoekstra et al., 2003; Jantunen and Bidleman, 1998), and non-
racemic chlordanes with preferential depletion of (+)TC and (−)CC were reported in
the North Atlantic in 2008 (Zhang et al., 2012b). TC and CC were racemic in air trans-20

ported across the North Pacific (2003–2006) and at Okinawa (2004) (Genualdi et al.,
2009). CC was racemic and (+)TC was depleted in air sampled over the North Atlantic
in 2004 (Lohmann et al., 2009), whereas TC was racemic and (−)CC was depleted in
2008 (Zhang et al., 2012b).

Does exchange of chlordanes between arctic soils and air have an influence on25

enantiomer composition? Regressions of ln Cair vs. T(K)−1 at Alert had negative slopes
which were significant at p < 0.001 for CC and trans-nonachlor (TN) (Su et al., 2008),
though not for TC, probably because of removal processes which lower its Cair in sum-
mertime. Such relationships for CC and TN are suggestive of local soil-exchange in-
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fluencing Cair (Hoff et al., 1998; Su et al., 2008; Wania et al., 1998). Could chlordanes
deposited during winter become enantioselectively degraded in arctic soils in summer
and re-emitted?

4 Conclusions

Enantiomer compositions of α-HCH, TC and CC give insights to pathways that were in-5

fluencing Alert in the decade preceding the Stockholm Convention, when these OCPs
were in transition from primary to secondary emission sources. Small biannual cy-
cles of higher α-HCH EFs in winter-spring and lower EFs in summer-fall suggest
volatilization from open water, though such influence was less at Alert than in the
lower Archipelago. Biannual cycles in the EFs of TC were more prominent and sug-10

gest different emission sources contributing to atmospheric concentrations in the warm
vs. cold seasons. This shift in sources may have contributed to the similar low-high
cycles in FTC, although other processes (e.g., photolysis, thermodynamic partitioning
effects) cannot be ruled out. Lack of seasonal variation in the EFs of CC is curious and
presently cannot be explained. This study provides the first baseline of EFs at an arctic15

air monitoring station. It is likely that the EF profiles of these and other chiral com-
pounds will continue to change with rising contribution of secondary emission sources,
weathering of residues in the environment, and loss of ice cover in the Arctic. Modeling
gives insight to the transport and fate processes impacted by climate change, but there
are many complexities and uncertainties (Gouin et al., 2013). Modeling and experi-20

mentally derived time series through monitoring are recommended as complementary
approaches (Gouin et al., 2013; Kallenborn et al., 2012b). Together with signatures
of isomers and parent/metabolite compounds, enantiomer-specific analysis could give
added diagnostic capability in air monitoring programs.
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The Supplement related to this article is available online at
doi:10.5194/acpd-14-25027-2014-supplement.
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Table 1. Annual mean concentrations and enantiomer fractions (EF) of organochlorine pesti-
cides at Alert, Canada.

α−HCH trans-chlordane cis-chlordane
mean (S.D.)a EF mean (S.D.)a EF mean (S.D.)a EF

Year pg m−3 range mean (S.D.) Nb pg m−3 range mean (S.D.) Nb pg m−3 range mean (S.D.) Nb

1994 54 (26) 0.493–0.508 0.501 (0.004) 16 0.57 (0.33) 0.449–0.478 0.467 (0.009) 16 1.2 (0.62) 0.489–0.511 0.503 (0.005) 16
1995 56 (26) 0.498–0.515 0.505 (0.003) 40 1.0 (4.1) 0.441–0.478 0.464 (0.010) 35 0.76 (0.51) 0.492–0.514 0.505 (0.004) 37
1996 55 (31) 0.498–0.516 0.505 (0.004) 31 0.34 (0.19) 0.429–0.495 0.464 (0.017) 31 0.69 (0.45) 0.493–0.512 0.505 (0.003) 32
1997 47 (20) 0.497–0.514 0.504 (0.004) 43 0.36 (0.18) 0.453–0.512 0.479 (0.011) 32 0.57 (0.27) 0.500–0.513 0.506 (0.003) 29
1998 45 (13) 0.498–0.512 0.504 (0.003) 24 0.33 (0.16) 0.451–0.490 0.477 (0.009) 15 0.68 (0.32) 0.494–0.513 0.507 (0.005) 13
1999 34 (12) 0.496–0.514 0.503 (0.004) 27 0.23 (0.13) 0.449–0.481 0.467 (0.009) 25 0.60 (0.21) 0.499–0.515 0.506 (0.003) 25
2000c 25 (11) 0.493–0.507 0.502 (0.004) 16 0.19 (0.10) 0.476–0.495 0.485 (0.006) 11 0.51 (0.22) 0.502–0.511 0.507 (0.003) 10

aAnnual mean concentrations from Hung et al., 2010.
bN refers to number of EF measurements.
cEF results from weeks 1–34, concentrations for entire year.
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 1 
Figure 1. (A) Seasonal (blue) and long-term (pink) trends in the EFs of α-HCH in air at Alert, fit-
ted by digital filtration (DF) analysis (Hung et al., 2002). Experimental points are marked (X). (B)
Fractional ice cover in the Canadian Arctic (Canadian Archipelago – southern Beaufort Sea),
from IceGraph 2.0 (http://www.ec.gc.ca/glaces-ice/?lang=En&n=A1A338F4-1&offset=5&toc=
show) (accessed 6 July 2014).
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Figure 2. Seasonal (blue) and long-term (pink) trends in EFs of (A) trans-chlordane (TC) and
(B) cis-chlordane (CC), with experimental points marked (X), as in Fig. 1.
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Figure 3. Seasonal (blue) and long-term (pink) trends in (A) EFs of TC and (B)
FTC =TC/(TC+CC) with experimental points marked (X), as in Fig. 1.
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